
CPS122 Lecture: Introduction to Software Development; Software Process
Models

last revised January 11, 2022
Objectives:

1. To set programming in the larger context of software development.
2. To introduce the Software Engineering Code of Ethics
3. To introduce basic terms/concepts of Software Development
4. To introduce software process models
5. To introduce UML

Materials:

1. Readings posted on Canvas: Lethbridge/Laganiere ch. 1; excerpts from
Somerville; SE Code of Ethics

2. Exercises from chapter 1 of Lethbridge/Laganiere
3. Projectable of Table 1.2 - page 6 in Britton and Doake
4. Projectable of “Tree Swing”
5. Projectable of Wheels Example Requirements - page 305 in Britton/Doake
6. Online access to requirements for AddressBook and ATM example systems.
7. Projectable of Agile Principles
8. Projectable of UML diagram structure

I. Introduction - A Disciplined Approach to Software Development

A. At the start of the course, we noted that this course deals with the
larger context known as software development, of which programming
is an important part - but by no means the only part.

1. A disciplined approach to developing software draws on ideas from
physical branches of engineering.

2. But it also depends heavily on disciplined interaction with the
"customer" for whom the software is being developed.

B. A key emphasis we will keep coming back to is the notion of quality.

1

1. Before thinking specifically about software quality, let’s consider
the larger question - how do you assess the quality of something
other than software that you buy? What do you look for?

ASK

2. The reading discussed a number of attributes of quality.

Discuss Exercise E-3 on page 13 of Lethbridge/Laganiere

3. Developing quality software is not easy.

a) Software systems are among the most complex systems ever
attempted by humanity. There is still much to be learned about
how to do this well.

b) Many large-scale software projects exhibit one or more of the
following problems to an unacceptable degree:

(1)The software is delivered late.

(2)The budget is exceeded.

(3)The software contains undetected errors. (Note: these are
commonly called “bugs”. Edgar Dijkstra has pointed out
that calling them bugs rather than errors is a way of avoiding
taking responsibility for them.) It’s not that some insidious
problem crept into our code - it’s that we made a mistake!

(4)The software is difficult to maintain/modify - fixing one
error often introduces two more.

(5)The software does not really meet the user's needs.

(6)The software is hard or confusing to use.

2

4. While quality is an issue with any product of human design, it is a
particular issue with software. We do not expect bridges or
buildings to collapse - but we are not surprised when a piece of
software “crashes”. We would be unhappy if we had to shut off and
restart our car in the middle of an interstate, but we get used to the
idea of periodically rebooting a computer ...

C. A disciplined approach to software development is intended to address
issues like this. Historically, this discipline drew heavily on ideas
from the engineering of physical systems, and is sometimes called
software engineering.

Its goals were:

1. Produce software that really meets the needs of users

2. Produce correct software on time and on budget.

3. Produce software that can be maintained and modified to keep
abreast of changing needs. For software that is used over a period of
years, the cost of keeping it current in the face of changing needs
often exceeds the cost of originally developing it.

Meeting these goals is not easy, and probably never will be, because
the complexity of modern software makes its development one of the
greatest intellectual challenges ever faced by humanity. However,
applying known principles can help.

D. However, in some profound ways software is certainly not like
physical engineered artifacts.

How? (ASK CLASS)

1. For most physical artifacts, the bulk of the cost is in the
manufacturing, not the design. For example, if one builds a bridge
and then attempts to build another just like it, the second bridge
costs almost as much to build as the first. However,
“manufacturing” software is cheap - the cost of producing a new

3

copy (say on a DVD or via download) is miniscule or almost
nothing at all.

2. For most physical artifacts, it is possible to specify "up front" what
is needed, and discovering an additional requirements once a
project is underway can be costly. (E.g. "change orders" in
construction projects.) But it is often the case in software
development that the exact requirements are only partially
understood at the outset, and statements like "it would be good if it
could go ____" are expected.

3. Most physical artifacts are costly to change once they have been
produced; but making changes to a piece of software is often a
matter of editing and recompiling. (Of course, making correct
changes is not necessarily easy!).

4. Physical artifacts wear out and need to be maintained or ultimately
replaced - but software never wears out - but may need to be
modified regularly in light of a changing environment or
understanding of what is needed.

5. It is often possible to tell, by looking closely at a physical artifact, that it
is defective. Faults in software are often much less obvious until they
manifest themselves in some sort of error.

6. A key difference is reflected in the existence of the “open source”
movement. Open source software is software whose source code is
made publicly available; in general, one who acquires open source
software is free to modify it to suit his/her own purposes (often
with the proviso that he/she share these modifications with the
wider community.)

a) For example, Linux is an open-source operating system, and
much of the software designed for Linux platforms is open
source. The same is true of the kernel of Mac OS X (Darwin).

4

b) It’s hard to imagine an equivalent to open source in the more
traditional engineering disciplines - the last thing anyone would
want is thousands of people making individual modifications to a
bridge! However, proponents of open source point out that such
software is often more reliable, because may eyes looking at the
code find more of the problems. (e.g. Linux is a much better
operating system for servers than Windows products, IMO)

7. A profound - and subtle difference - has to do with mathematical
foundations.

a) Continuous mathematics - the calculus - is the mathematical
foundation of traditional engineering.

b) However, discrete mathematics is really the foundation of
“software engineering”.

c) In this distinction lies a profound difference between failure
modes of the two entities. Physical systems often have slight
errors; catastrophic failure is relatively rare. Software systems
are prone to crashes, or total failures.

8. Despite the differences, there is much to be learned from other
engineering disciplines about the process of producing quality
software - though I would resist the notion that software
development is just another form of engineering.

E. As the reading pointed out, there are three broad categories of software
- though the distinction is not hard and fast and not everything needly
fits this sort of classification.

Discuss Exercise E-1 in Lethbridge/Laganiere p 6

F. There are also three broad categories of software development
projects.

5

1. Greenfield projects start from scratch.

2. Evolutionary projects involve making changes to existing software.

3. Framework projects start with a framework that is extended or a
set of components that are connected to meet a specific need.

II.Ethical Issues

One key characteristic of any profession is the expectation that its
practitioners will perform their work in accordance with ethical
expectations appropriate to the profession.

A. In considering the ethical ramifications of a decision, one crucial
concept is the notion of a stakeholder. A stakeholder is someone who
has a legitimate stake in the outcome of the project.

1. The assigned reading classified stakeholders into four major
categories. What were they?

ASK

a) Users - those who will eventually use the software.

b) Clients - those who decide to have the software developed, and
pay for doing so.

c) Developers - those who actually produce the software.

d) Development managers - those who oversee the work of the
developers.

2. For different kinds of software projects, there may be different
relationships between these categories of stakeholders - e.g.

a) Relationship between clients and users

6

(1) In the case of custom software

(a) the users of the software may be the same as the clients -
or may be employees of the client. (E.g. in the case of
the software Gordon uses for registration, billing etc.
Gordon is the client, but faculty and staff are users.)

(b)Or, the users of the software may be customers of the
client - e.g. if a firm uses an e-commerce web site, it is
the client and its customers are the users.

(2) In the case of generic software, there may or may not be a
client per se. A client may buy the software for its people to
use (such as the site licenses Gordon has with Microsoft), or
the users may buy the software from the developers directly.

(3) In the case of embedded software, the client may be the
manufacturer of the product in which the software is
embedded, and the users of the software may not even be
aware that they are using it!

b) The developers may be part of the client organization, or may be
contracted by the client to produce the software for them, or may sell
generic software to a client or directly to users.

c) In some cases, one individual may be user, client, developer,
and development manager for a project - e.g. if you or I write
software for our own personal use.

Discuss Exercise E-2 on page 11 of Lethbridge/Laganiere

B. In the case of Software Engineering, ethical expectations were
formalized about two decades ago in a document developed jointly by
the ACM and the IEEE/CS, entitled “Software Engineering Code of
Ethics and Professional Practice”.

7

This exists in both a short form and a long form. You read the short
form version for today's class.

Refer to version on Canvas

1. Comments/Questions?

ASK

2. Notice that the first stakeholder listed is the Public. What does
this mean?

ASK

Why do you think this stakeholder is listed first, and the Employer
and Client are subordinated to it in 2

3. Notice that things like commitment to quality work, interpersonal
relationships with colleagues, and our own professional growth are
considered ethical responsibilities.

C. Show full form online (link from course web site)

III.Major Activities in Software Development

A. The development of a medium to large scale piece of software involves quite
a number of different activities.

1. What do you think they include?

ASK

2. Actually, different writers classify the activities slightly differently. This
is the classification used by the authors of your main text.

PROJECT Table 1-2 in Britton and Doake

8

3. What fraction of the total effort do you think is expended on the actual
writing of code (programming, in the narrow sense)?

ASK

(About 1/6)

B. We will look at the individual activities briefly now, but in more detail over
the course of the semester.

I will use a listing that is more fine-grained than what appeared in the
reading.

1. Establishing Requirements - at some point in the process, it is vital
is to spell out exactly what is needed.

a) It is very easy to get this part wrong. Some of the worst
software disasters that have occurred in the industry have
resulted from misunderstanding of what is really needed.

PROJECT: “Tree Swing”

b) Often, requirements are formalized in terms of some sort of
requirements document that explicitly lists the requirements.
Sometimes this includes the creation of a specification for the
software - which is a formal statement of what the software will
do, and may serve as a legal contract between the software
developer and the client. (This is particularly the case with
custom software; rarely true with generic software.)

(1)One of the strengths of the main textbook for this course is that
it is built around a continuing example: a case study called
“Wheels” based on software to support a bicycle-rental
business. An example of a (fairly informal) statement of
requirements for this system is found on page 305 of the book

PROJECT Britton/Doake page 305

9

(2)We will also be referring to two other online examples
throughout the course. One is a fairly simple system for
maintaining a personal address book.

PROJECT Requirements for AddressBook system

(3)The other online example is a bit more complex - software
for controlling an ATM

PROJECT Requirements for ATM System

c) Both readings noted there is a spectrum in how requirements are
approached.

(1)At one end of the spectrum is approaches that stress
identifying as many as possible of the requirements for a
project as early as possible.

A danger to this approach is that it is often not possible to
fully identify requirements early - and requirements may
change as the project is going along.

(2)At the other end of the spectrum are approaches in which
requirements are identified incrementally - and new
requirements may become known as early versions of the
project are used and users say "it would be nice if ...'

A danger to this approach is that significant design changes
may be necessitated by newly-discovered requirements.

(3)The nature of the project may suggest where on this spectrum a
given project may fall. A small to medium size project built for
a changing environment may benefit from the flexibility of a
more incremental approach - especially if it is hard to get a
handle on all the requirements up front. Large projects may
call for identifying most requirements early as much as
possible, since design changes to support new requirements
may have major costs.

10

2. Analysis activities focus on understanding the need

a) In object-oriented software development, probably the most
important analysis activity is the identification of use cases, which
are formal statements of how the software will actually be used,
and which serve to drive the whole rest of development.

b) Industrial-strength analysis requires expertise both in software
development and in the problem domain - e.g. doing analysis for
a particular business domain requires business expertise in that
area; doing analysis for software to be used to control laboratory
instruments requires scientific expertise, etc. We will discuss
this some, but not at great length.

3. Design - here the goal is to determine how the requirements are
going to be met. Design is a broad area that encompasses a large
number of issues, like:

a) System design is typically part of creating an embedded system -
the partitioning of functionality between hardware and software.
(This is usually not an issue with custom or generic software.)

b) User interface design is typically part of creating custom or
generic software - how will users interact with the software?
(This is usually not an issue with embedded software.)

c) Software structure (architecture) - how will the overall task be
broken up into component parts?

d) If the software uses a database, then the database will need to be
designed. (This is primarily an issue with data-processing software)

e) Design (called detailed design) is also a part of the next activity.
Design will be a major emphasis of this course

11

4. The reading included an activity known as "modeling" - but
actually various models are developed in conjunction with the other
activities, as we shall see.

5. Implementation refers to actually translating the design into reality.
In the case of software, this involves:

a) Detailed design of the individual components identified in the
overall design phase (e.g. the individual classes in an object-
oriented design)

b) Coding the design in a suitable language (e.g. Java). (This is
what is sometimes called "programming" in the more narrow
sense of the term.)

c) Testing each component as it is implemented

d) Integrating the various components together, and testing the result.

6. Installation (what the reading called Deployment)

a) Installation includes everything needed to support the use of the
software by the users, including documentation and training.

b) For large systems running on multiple computers, this may
involve deploying distributing the system to multiple places.

7. Maintenance

a) Once the software is delivered by the developer to the client, it
is put into use by the users. Frequently, this leads to the
discovery of the need for changes. Software maintenance
refers to the activity of modifying an existing piece of software.

12

(1)Maintenance is of three general types:

(a)Corrective maintenance - fixing errors that were not
caught before the software was delivered - i.e. to make
the software fulfill its original requirements.

Example: The program crashes or freezes when a certain
feature is used in a particular way, or the result produced
by a certain operation is incorrect or incomplete

(b)Adaptive maintenance - dealing with changing requirements.
As a piece of software is used over time, external changes in
the environment in which it is being used may change the
tasks the software is required to perform

Example: Tax return preparation software must undergo
adaptive maintenance whenever the tax code changes (i.e.
most election years!)

(c)Perfective maintenance - adding new features not part of
the original release, or improving the user interface.

(2)Note that software maintenance is quite different from
hardware maintenance.

(a)Software doesn't wear out. (There is no such thing as “bit
rot”).

(b)The purpose of maintenance of a mechanical device such
as a car is to bring it back to its original condition when
delivered. Software maintenance involves improving the
condition of the software in some way.

b) The table in the book book referred to this stage simply as
“installation” because significant maintenance often gives rise to
a whole new project.

13

8. Quality Assurance - also known as Verification and validation -
ensuring that the resulting software is built correctly (verification)
and does the right thing (validation).

a) Sometimes there is an activity at the end of development called
“testing”. While testing is a major means of doing verification
and validation, it is not (and should not be) the only means of
doing verification and validation.

b) The fundamental concepts of quality assurance should pervade
the entirety of a project - not confined to a burst of testing at the
end of development.

9. Though not properly a stage in the creation of software, we should
note that there is an end of life for any given piece of software,
commonly called retirement or obsolescence, when a particular
piece of software is no longer maintained and stops being used.
This occurs when either

a) The original need for the software no longer exists

b) It is expedient to develop a whole new piece of software rather
than continuing to maintain an old piece of software.

IV.Software Process Models

A. We will look at the activities themselves in more detail over the course
of the semester. For now, we will focus on the notion of a systematic
process for carrying them out.

It is important to keep in mind the distinction between the activities
themselves and the process for carrying them out. At one point, it was
common to think of these as discrete steps in the software
development process. Though modern OO development approaches
do not view them in this sequential way; it remains the case that there
are certain things which need to be done.

14

B. Traditionally, the various activities have been organized using one of
several software process models.

1. One approach is referred to - somewhat tongue-in-cheek - as “build
and fix”.

a) This is a totally non-systematic approach.

(1)One begins work on writing code almost right away. Some
analysis and design may be done as needed, but it is not
uncommon for someone to write code without really
understanding what he/she is doing.

(2)Once a draft of the code exists, it is tested. Problems are
identified and fixed - which in turn gives rise to new
problems ...

(3)The process is continued until the product is judged
satisfactory.

(4)The dominant attitude behind this approach is epitomized by
the words of a project manager who was cited in a talk I
heard - “We’re going to have a lot of debugging to do on this
project, so we’d better get started coding as soon as possible”

b) Of course, build and fix may be an appropriate model for small-
scale or exploratory programming project. However, it quickly
becomes a very bad idea for projects of any size - whether larger
school projects or in “the real world”

c) This is the approach most beginning Computer Science students
take to their first projects. Unfortunately, some never seem to
get beyond this!

15

d) Problems with this approach?

ASK

2. At the other extreme, one alternative is to follow a fairly strict sequence:
first requirements are identified, then analysis and design are done, then
the design is implemented, and then the finished product is tested
(though testing is done throughout the process as well).

a) In this model, the various things that need to be done are
regarded as sequential steps. Each is done to completion before
we move on to the next activity; and once we move on, we
avoid going backward if at all possible. This approach is often
called the waterfall model, because just as water goes down a
waterfall but never goes back up, so the process aims to carry
out each stage and then move on.

b) Though this approach appears to be efficient, it runs into some
serious problems of its own. What are they?

ASK.

(1)It is often very hard to fully understand the requirements for a piece
of software early in its development. Missed requirements are
quite common, even when an effort is made to do a thorough job of
requirements analysis before moving on to the next phase.

(2)It is not possible, in practice, to carry out a significant
software development process with a totally one-way flow of
activity. Sometimes later work necessitates clarification of
issues considered earlier.

(3)Nothing is available for use until the end of the process, which
can one or more years from start to finish. This can be years!

(4)Changes in the external environment can result in changes to
the requirements for a piece of software. (Example: years

16

ago I developed a software system for one aspect of the work
of the registrar’s office which, among other things, had to
keep track of student grades. While I was working on the
project, the faculty voted to change from straight letter
grades (A, B ...) to plus-minus grading (e.g. A, A-, B+, B ...)

c) The waterfall model is sometimes called the “traditional
waterfall model”, because there was a time when this model was
strongly advocated as the right way to produce quality software.
It was, at the time it was introduced, a major advance over the
prevalent “build and fix” approach. But now it is generally
recognized that this is not the way to build software - and there
is a whole history of documented project failures in which this
approach played a part.

3. Recognizing the difficulty of fully capturing requirements, projects
are done now using iterative, incremental development. This is not
a single model, but rather a family of models.

a) An incremental approach has at least three major advantages:

(1)The client gets to begin making some use of the software fairly
early, rather than having to wait for everything to be completed.

(2)Experience with using the first part of the software implemented
can help to refine the requirements for subsequent parts.

(3)A significant disadvantage is that an incremental model can
degenerate to build and fix or an opportunistic approach if the
developer is not careful. The key lies in planning what
features are to be developed for each increment.

b) One family of incremental approaches known as agile
approaches.

PROJECT: Agile Principles

17

(1)These approaches are sometimes referred to as “low
ceremony” approaches, because there is little emphasis on
any sort of formal documentation.

(2)Agile approaches have been very successful for projects
characterized by changing or hard to pin down requirements
- which includes many projects (including senior projects at
Gordon!)

(3)Agile approaches are less likely to be used (without
significant adaption) with large scale projects, or ones that
are life-critical, though.

(4)A danger with agile approaches is that they can degenerate to
build and fix.

C. For pedagogical reasons, this course will look at the activities of the
software lifecycle in sequence one at a time - but this should not be
construed as advocating the waterfall model! The course project will
use an iterative approach, but adapted to the realities of a course
project - e.g. the requirements will all be given up-front.

V. UML

As we have already noted, this course is not simply about software
development, but about a particular approach to software development
called object-oriented software development. We said something about
this earlier, and will have a lot more to say about this later, but for now I
want to note one emphasis that will occur quite a bit in this course - the
use of a formalism called the Unified Modeling Language (UML).

A. UML is a set of diagramming conventions that allow one to represent a
software system by a collection of models. The first version of UML
was adopted by the Object Management Group (OMG) - a consortium
of companies - in 1997. The second major version (UML 2.0) was
adopted in 2004. The most recent version is known as UML 2.2.

18

B. UML is a graphical language - that is, its vocabulary is composed of
graphical symbols. In this respect, it is international in scope.
(Example: my experience at OOPSLA design fest).

C. UML is called the unified modeling language for historical reasons.
Prior to UML, there were a number of different graphical notations
that were in wide use. UML represents a unification of these notations
in a single system that is now widely used.

D. As you.can see from the schedule in the syllabus, we will make
extensive use of UML in this course. Currently, UML defines 14 types
of diagrams that can be used in the design of software. These are not
simply diagrams used to document software - they are tools that can be
used as part of the design process.

They are categorized into two broad categories, with a major
subcategory under one of them

PROJECT Diagram structure

1. Structural diagrams are used to depict the component parts of a
system and how they relate one another. We will talk about four of
them:

a) Class diagrams

b) Object diagrams

c) Component diagrams (in conjunction with Architectural Design)

d) Deployment diagrams (ditto)

2. Behavioral diagrams depict how the system behaves. We will talk
about two kinds of behavioral diagrams as well as the subcategory
of Interaction diagrams.

a) Use case diagrams

19

b) State machine diagrams

3. Interaction diagrams form a subcategory of behavioral diagrams.
We will talk about

a) Sequence Diagrams

b) Communication Diagrams

4. By the way - notice that this diagram is actually a UML class
diagram!

5. Note well, though, that our goal is not learn how to draw various
diagrams, but rather to understand how to think about problem
solving in various ways. The diagrams are merely tools to that end!

E. UML can be used in a variety of ways

1. In a more plan-driven approach, UML can be used for planning and
documentation.

2. Agile approaches may make considerable use of UML sketches.

F. A number of companies produce software tools for working with UML
diagrams. (CASE tools)

1. Such tools frequently support:

a) The creation of the various kinds of UML diagrams

b) Forward engineering - converting a UML diagram into code.

c) Reverse engineering - converting code into a UML diagram.

(These two together are often called “round-trip engineering”.

20

2. “Industrial strength” versions of these tools tend to be quite
expensive - in excess of $100 per user. But they do tend to be
extensively used in industry, where the time savings they engender
justifies the cost.

There are community editions available for some of these tools
(that don’t support round-trip engineering).

3. For class exercises, we will be using a tool called astah. While this
is a commercial product that normally has significant cost, but
students can download a copy for free at astah.net. There also
used to be a community edition accessible from the same site that
was free to all for non-commercial use - but this appears to no
longer be available.

G. To give you practice with the activities of the software lifecycle, and
with the use of UML, for much of the semester you be working in
teams on a larger scale project.

1. We will discuss the requirements for this at a later time. In this
case, for pedagogical reasons, you will be given the requirements
up front - i.e. you will not actually seek to discover requirements by
working with users. For pedagogical reasons, the approach will
resemble the waterfall model - though we're not actually
advocating that!

2. If you are a CS major, as a senior you will be involved in a senior
project that does entail discovering requirements from an actual
user. Typically, a senior project uses a more agile approach.

21

